在幾何學發展的歷史中,歐幾里得的《幾何原本》有什麼意義?

在幾何學發展的歷史中,歐幾里得的《幾何原本》有什麼意義?

文學藝術

在幾何學發展的歷史中,歐幾里得的《幾何原本》有什麼意義?

在幾何學發展的歷史中,歐幾里得的《幾何原本》起了重大的歷史作用。這種作用歸結到一點,就是提出了幾何學的「根據」和它的邏輯結構的問題。在他寫的《幾何原本》中,就是用邏輯的鏈子由此及彼的展開全部幾何學,這項工作,前人未曾作到。下面小編就為大家帶來詳細的介紹,一起來看看吧!

《幾何原本》的誕生,標誌著幾何學已成為一個有著比較嚴密的理論系統和科學方法的學科。並且《幾何原本》中的命題1.47,證明了在西方是歐幾里得最先發現的勾股定理,從而說明了歐洲是西方最早發現勾股定理的大洲。

《幾何原本》在論證方法上的影響

關於幾何論證的方法,歐幾里得提出了分析法、綜合法和歸謬法。所謂分析法就是先假設所要求的已經得到了,分析這時候成立的條件,由此達到證明的步驟;綜合法是從以前證明過的事實開始,逐步的導出要證明的事項。

歸謬法是在保留命題的假設下,否定結論,從結論的反面出發,由此導出和已證明過的事實相矛盾或和已知條件相矛盾的結果,從而證實原來命題的結論是正確的,也稱作反證法。

《幾何原本》作為教材的影響

從歐幾里得發表《幾何原本》到如今,已經過去了兩千多年,儘管科學技術日新月異,由於歐氏幾何具有鮮明的直觀性和有著嚴密的邏輯演繹方法相結合的特點,在長期的實踐中表明,它巳成為培養、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學家從學習幾何中得到益處,從而作出了偉大的貢獻。

少年時代的牛頓在劍橋大學附近的夜店裡買了一本《幾何原本》,開始他認為這本書的內容沒有超出常識範圍,因而並沒有認真地去讀它,而對笛卡兒的「坐標幾何」很感興趣而專心攻讀。

後來,牛頓於1664年4月在參加特列台獎學金考試的時候遭到落選,當時的考官巴羅博士對他說:「因為你的幾何基礎知識太貧乏,無論怎樣用功也是不行的。」這席談話對牛頓的震動很大。於是,牛頓又重新把《幾何原本》從頭到尾地反覆進行了深入鑽研,為以後的科學工作打下了堅實的數學基礎。

《幾何原本》的缺憾

但是,在人類認識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由於歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學的「根據」問題並沒有得到徹底的解決,他的理論體系並不是完美無缺的。

比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什麼作用。又如,歐幾里得在邏輯推理中使用了「連續」的概念,但是在《幾何原本》中從未提到過這個概念。

有些被歐幾里得作為不證自明的公理,卻難以自明。比如「第五平行公設」,歐幾里得在《幾何原本》一書中斷言:「通過已知直線外一已知點,能作且僅能作一條直線與已知直線平行。」

這個結果在普通平面當中尚能夠得到經驗的印證,那麼在無處不在的閉合球面之中(地球就是個大曲面)這個平行公理卻是不成立的。俄國人羅伯切夫斯基和德國人黎曼由此創立了非歐幾何學。

共2頁 上一頁 1 2 下一頁
文學藝術
實用查詢
文學資料
健康知識
起名參考