萊昂哈德·歐拉是誰 他所獲的評價是什麼樣的

萊昂哈德·歐拉是誰 他所獲的評價是什麼樣的

一些歷史評價

萊昂哈德·歐拉是誰 他所獲的評價是什麼樣的

萊昂哈德·歐拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士數學家、自然科學家。

      歐拉全集

計算和著作

「歐拉進行計算看起來毫不費勁兒,就像人進行呼吸,像鷹在風中盤旋一樣。」(阿拉戈說),這句話對歐拉那無與倫比的數學才能來說並不誇張,他是歷史上最多產的數學家。與他同時代的人們稱他為「分析的化身」。歐拉撰寫長篇學術論文就像一個文思敏捷的作家給親密的朋友寫一封信那樣容易。甚至在他生命最後17年間的完全失明也未能阻止他的無比多產,如果說視力的喪失有什麼影響的話,那倒是提高了他在內心世界進行思維的想像力。

歐拉到底出了多少著作,直至1936年人們也沒有確切的瞭解。但據估計,要出版已經搜集到的歐拉著作,將需用大4開本60至80卷。彼得堡學院為了整理他的著作整整花了47年。1909年瑞士自然科學聯合會曾著手搜集、出版歐拉散軼的學術論文。這項工作是在全世界許多個人和數學團體的資助之下進行的。這也恰恰顯示出,歐拉屬於整個文明世界,而不僅僅屈於瑞士。為這項工作仔細編製的預算(1909年的錢幣約合80000美元)卻又由於在聖彼得堡(列寧格勒)意外地發現大量歐拉手稿而被完全打破了。

《歐拉全集》

據統計,歐拉一生平均每年發表八百頁的學術論文,內容涵蓋多個學術範疇。1911年,數學界系統地開始出版歐拉的著作,並定名為《歐拉全集》(Opera Omnia),全集計劃出84卷,迄今已上架者已有80卷,剩餘還剩下4卷正在籌備中。平均每卷厚達五百多頁,重約四磅。預計《歐拉全集》全部出齊時約重三百磅。

時代背景

分析的時代

歐拉的數學生涯開始於牛頓(Newton)去世的那一年。對於歐拉這樣一個天才人物,不可能選擇到一個更有利的時代了。解析幾何(1637年問世)已經應用了90年,微積分大約50年,牛頓(Newton)萬有引力定律這把物理天文學的鑰匙,擺到數學界人們面前已40年。在這每一個領域之中,都已解決了大量孤立的問題,同時在各處做了進行統一的明顯嘗試。但是還沒有像後來做的那樣,對整個數學,純粹數學和應用數學,進行任何有系統的研究。特別是笛卡兒(Descrates)、牛頓(Newton)和萊布尼茨(Leibniz)強有力的分析方法還沒有像後來那樣被充分運用,尤其在力學和幾何學中更是如此。

那時代數學和三角學已在一個較低的水平上系統化並擴展了。特別是後者已經基本完善。歐拉也證明了他確是個大師。事實上,歐拉多方面才華的最顯著特點之一,就是在數學的兩大分支--連續的和離散的數學中都具有同等的能力。

作為一個算法學家,歐拉從沒有被任何人超越過。也許除了雅可比之外,也沒有任何人接近過他的水平。算法學家是為解決各種專門問題設計算法的數學家。舉個很簡單的例子,我們可以假定(或證明)任何正實數都有實數平方根。但怎樣才能算出這個根呢?已知的方法有很多,算法學家則要設計出切實可行的具體步驟來。再比如,在丟番圖分析中,還有積分學裡,當一個或多個變量被其他變量的函數進行巧妙的(常常是簡單的)變換之前,問題往往不可能解決。算法學家就是自然地發現這種竅門的數學家。他們沒有任何同一的程序可循,算法學家就像隨口會作打油詩的人--是天生的,而不是造就的。

當一個真正偉大的算法學家像印度的羅摩奴闍一樣不知從什麼地方意外來臨的時候,就是有經驗的分析學者也會歡呼他是來自天國的恩賜:他那簡直神奇的對表面無關公式的洞察力,會揭示出隱藏著的由一個領域導向另一個領域的線索。從而使分析學者得到為他們提供的弄清這些線索的新題目。算法學家是"公式主義者",他們為了公式本身的緣故而喜歡美觀的形式。

環境的因素

在談到歐拉平靜而有趣的生活之前,我們必須介紹一下他那個時代的兩個環境因素,這些因素促進了他的驚人的活躍,並對他的活動有指導作用。

在18世紀的歐洲,大學不是學術研究的主要中心。假如沒有古典派的傳統及其對科學研究的可以想像的敵意,大學本來是可以成為主要中心的。數學對於古代人足夠嚴密,受到重視;而物理學比較新,受到人們的懷疑。此外,在當時的大學裡,人們希望數學家把他的大部分力量放在基礎教學上。至於學術研究,如果搞的話,那將是毫無益處的奢侈,就像今天在一般的美國高等學校裡那樣。那時候英國大學的研究員們能夠把他們選擇的課題搞得相當好。然而,他們很少願意選擇什麼課題,反正搞成了什麼或沒搞成什麼都不會對他們的麵包和黃油產生影響。在如此的鬆弛,或者說公開的敵意之下,根本沒有什麼好理由來解釋為什麼那些大學本來應該在科學發展中起帶頭作用,而事實上卻沒有起到。

這個帶頭的責任由得到慷慨或有遠見的統治者所資助的各個皇家科學院承擔了。普魯士腓特烈大帝和俄國葉卡捷琳娜女皇慷慨地給了數學以無法報償的資助。他們使得數學的發展有可能在整整一個世紀之中處於科學史上一個最活躍的時期。對歐拉來說,是柏林和聖彼得堡提供了數學創作的力量。而這兩個創造力的中心都應當把它們對歐拉的激勵歸功於萊布尼茨(Leibniz)不斷進取的雄心。是萊布尼茨(Leibniz)起草過規劃的這兩個科學院給歐拉提供了成為歷史上最多產的數學家的機會。因而,在某種意義上說,歐拉是萊布尼茨(Leibniz)的苗裔。

柏林科學院由於缺乏頭腦而日漸衰敗已有40年,歐拉在腓特烈大帝的鼓勵下給了它有力的衝擊,使它再次有了生氣。彼得大帝在世時沒來得及按照萊布尼茨(Leibniz)的規劃建立起來的聖彼得堡科學院,則由他的繼位者建立起來了。

這兩個科學院不像今天一些科學院那樣以鑒定精心撰寫的優秀著作,授予院士資格為主要職責。它們是研究機構,僱傭院士進行科學研究。薪水和津貼金很優厚,使人足以保證本身家庭的舒適生活。歐拉的家屬一度不少於18個人,他還是足以維持他們都過著豐裕的生活。使18世紀院士生活具有吸引力的最後一點是,他的孩子們只要有任何一點才能,都肯定會得到很好的施展機會。

接下來我們就會看到對歐拉的豐碩數學成果具有決定性影響的第二個因素。提供財政支持的統治者很自然地會希望他們的金錢除開抽像的文化之外再多換到些東西。但必須強調的是,一旦統治者的投資得到了適當的報償,他們就不再堅持要受僱傭的人把剩餘時間也花到"生產性"工作上了。歐拉、拉格朗日和其他院士們都可以自由地做他們樂意做的工作。沒有任何明顯的壓力來迫使誰搞出點什麼能被政府直接利用的實際成果。18世紀統治者們比今天許多研究院院長更明智的是讓科學按自己的規律發展的,只不過偶爾提到他們眼前需要什麼。他們似乎本能地意識到了,只要不時作個恰當的暗示,所謂的"純粹"研究就會把他們期待的緊迫實際問題作為副產品搞出來。

這個籠統的說法有一個重要的例外,它既不證明,也不否定這個規律。剛巧在歐拉的時代,數學研究中懸而未決的問題正好與海洋霸權這個當時也許是第一等的實際問題聯繫在一起。航海技術勝過所有其他對手的國家必然會控制海洋。而航海的首要問題是在離岸數百海浬的大海中精確地確定艦船的位置,以使之比敵手更快地航抵海戰的地點(不幸,只是為了這個)。正如眾所周知的,英國控制了海洋。它能做到這一點,在很大程度上是由於它的航海家在18世紀能夠把天體力學中的純數學研究成果加以實際應用。這樣一項實際應用正與歐拉直接有關。現代航海的奠基人當是牛頓(Newton),儘管他本人並不曾為這個問題費過腦筋,也從不曾(就人們迄今所知)踏上過一艘艦船的甲板。確定海上船的位置要靠觀測天體(在特別的航行中有時這要包括木星的衛星)。牛頓(Newton)萬有引力定律表明必要時以充分的耐心可以預先算出百年之內的行星位置和月相盈虧之後,希望控制海洋的那些人便安排航海天文歷的計算人員下苦功編製行星未來位置的表格。

在這一項很實用的事業中,月亮引出了特別棘手的問題,即牛頓定律彼此吸引的三個星體的問題。當我們進入20世紀的時候,這個問題還要重現許多次。歐拉是第一個為這個月球問題提出一種可以計算的解法(月球理論)的人。這三個相關星體是月亮、地球和太陽。雖然關於這個問題在這裡談不了什麼,要推到後幾章去,但我們可以說,這個問題是整個數學範疇內最難的問題之一。歐拉不曾具體解答這個問題,但他的近似計算方法(今天被更好的方法代替)具有充分的實用價值,足以使英國的計算人員為英國海軍部算出月球表了。為此,計算者獲得5000英鎊(當時這是相當大的一筆款子),歐拉因其方法而得到300英鎊的獎金。

所獲評價

人類歷史上最有影響的100人之一

歐拉是18世紀最優秀的數學家,也是歷史上最偉大的數學家之一。十八世紀瑞士數學家和物理學家倫哈特·歐拉始終是世界最傑出的科學家之一。他的全部創造在整個物理學和許多工程領域裡都有著廣泛的應用。 歐拉的數學和科學成果簡直多得令人難以相信。他寫了三十二部足本著作,其中有幾部不止一卷,還寫下了許許多多富有創造性的數學和科學論文。總計起來,他的科學論著有七十多卷。歐拉的天才使純數學和應用數學的每一個領域都得到了充實,他的數學物理成果有著無限廣闊的應用領域。

早在上一個世紀,艾薩克·牛頓就提出了力學的基本定律。歐拉特別擅長論證如何把這些定律運用到一些常見的物理現象中。例如,他把牛頓定律運用到流體運動,建立了流體力學方程。同樣他通過認真分析剛體的可能運動並應用牛頓定律建立了一個可以完全確定剛體運動的方程組。當然在實際中沒有物體是完全剛體。歐拉對彈性力學也做出了貢獻,彈性力學是研究在外力的作用下固體怎樣發生形變的學說。

歐拉的天才還在於他用數學來分析天文學問題,特別是三體問題,即太陽、月亮和地球在相互引力作用下怎樣運動的問題。這個問題──二十一世紀仍要面臨的一個問題──尚未得到完全解決。順便提一下,歐拉是十八世紀獨一無二的傑出科學家。他支持光波學說,結果證明他是正確的。

歐拉豐富的頭腦常常為他人做出成名的發現開拓前進的道路。例如,法國數學家和物理學家約瑟夫·路易斯·拉格朗日創建一方程組,叫做「拉格朗日方程」。此方程在理論上非常重要,而且可以用來解決許多力學問題。但是由於基本方程是由歐拉首先提出的,因而通常稱為歐拉—拉格朗日方程。一般認為另一名法國數學家讓·巴普蒂斯·約瑟夫·傅立葉創造了一種重要的數學方法,叫做傅裡葉分析法,其基本方程也是由倫哈特·歐拉最初創立的,因而叫做歐拉—傅裡葉方程。這套方程在物理學的許多不同的領域都有著廣泛的應用,其中包括聲學和電磁學。

在數學方面他對微積分的兩個領域──微分方程和無窮級數──特別感興趣。他在這兩方面做出了非常重要的貢獻,但是由於專業性太強不便在此加以敘述。他對變分學和複數學的貢獻為後來所取得的一切成就奠定了基礎。這兩個學科除了對純數學有重要的意義外,還在科學工作中有著廣泛的應用。歐拉公式 表明了三角函數和虛數之間的關係,可以用來求負數的對數,是所有數學領域中應用最廣泛的公式之一。歐拉還編寫了一本解析幾何的教科書,對微分幾何和普通幾何做出了有意義的貢獻。

歐拉不僅在做可應用於科學的數學發明上得心應手,而且在純數學領域也具備幾乎同樣傑出的才能。但是他對數論做出的許多貢獻非常深奧難懂,不宜在此敘述。歐拉也是數學的一個分支拓撲學領域的先驅,拓撲學在二十世紀已經變得非常重要。

最後要提到的一點也很重要,歐拉對使用的數學符號制做出了重要的貢獻。例如,常用的希臘字母π代表圓周率就是他提出來的。他還引出許多其它簡便的符號,數學中經常使用這些符號。

即使沒有歐拉其人,他的一切發現最終也會有人做出。但是我認為做為衡量這種情況的尺度應該提出這樣的問題:要是根本就沒有人能做出他的發現,科學和現代世界會有什麼不同呢?就倫哈特·歐拉的情況而言,答案看來很明確:假如沒有歐拉的公式、方程和方法,現代科學技術的進展就會滯後不前,實際上看來是不可想像的。瀏覽一下數學和物理教科書的索引就會找到如下查照:歐拉角(剛體運動)、歐拉常數(無窮級數)、歐拉方程(流體動力學)、歐拉公式(復合變量)、歐拉數(無窮級數)、歐拉多角曲線(微分方程)、歐拉齊性函數定理摘微分方程)、歐拉變換(無窮級數)、伯努利—歐拉定律(彈性力學)、歐拉—傅裡葉公式(三角函數)、歐拉—拉格朗日方程(變分學,力學)以及歐拉一馬克勞林公式(數字法),這裡舉的僅僅是最重要的例子。

歐拉的著述浩瀚,不僅包含科學創見,而且富有科學思想,他給後人留下了極其豐富的科學遺產和為科學獻身的精神。歷史學家把歐拉同阿基米德、牛頓、高斯並列為數學史上的「四傑」。如今,在數學的許多分支中經常可以看到以他的名字命名的重要常數、公式和定理。

從所有這一切來看,有些人可能要問為什麼在美國學者邁克爾.哈特在其所著的《歷史上最有影響的100人》中沒有把歐拉的名次排得更高些,其主要原因在於雖然歐拉在論證如何應用牛頓定律方面獲得了傑出的成就,但是他自己從未發現任何獨創的科學定律,這就是為什麼要把威廉·康拉德,倫琴和格雷戈爾·孟德爾這樣的人物排在他前面的原因。他們每個人主要是發現了新的科學現象或定律。儘管如此,歐拉對科學、工程學和數學的貢獻還是巨大的。

大師評價

歐拉計算起來輕鬆自如, 就像人們呼吸, 鷹在空中飛翔。

------ D.F.J.Arago (阿拉戈)

學習歐拉的著作,乃是認識數學最好的工具。

------ Johann Carl Friedrich Gauss (卡爾·弗裡德裡希·高斯)

今天的學生從歐拉的無窮分析引論中所能獲得的益處, 是現代任何一本教科書都不能比擬的。

------ A.Weil(外爾)

讀歐拉的著作吧,在任何意義上,他都是我們的大師。

------Pierre-Simon Laplace(皮埃爾-西蒙·拉普拉斯)

我介紹高等分析的時候,它還是個孩子,而你正在將它帶大成人。

------Johann Bernoulli(約翰·伯努利)

紀念活動

前蘇聯

俄羅斯的近代數學可以認為從歐拉開始的,歐拉在俄國生活了 30 多年,他積極將先進的科學知識傳入長期閉塞落後的俄羅斯,創立了俄羅斯第一個數學學派——歐拉學派,親手將一大批俄羅斯青年引進了輝煌的數學殿堂。這也就不難理解,在許多前蘇聯和俄羅斯的書籍裡,都親切地稱歐拉是「偉大的俄羅斯數學家」。為了紀念歐拉誕辰250週年,前蘇聯於1957年發行了印有歐拉頭像的郵票。文字內容為:歐拉,偉大的數學家和學者,誕辰250週年。

瑞士

在一個小國家裡誕生一位科學巨匠,這在世界史上並不多見。瑞士數學家歐拉便是其中最出色的一位,雖然他成年以後一直生活在兩座遙遠的異國城市:彼得堡和柏林,他的肖像畫卻出現在瑞士法郎上,與英鎊上的牛頓一起成為至今仍流通歐洲的紙幣上僅有的兩位科學家。1707年4月15日,歐拉出生在瑞士西北部鄰近法國和德國的巴塞爾,這座通用法語的城市至今人口仍不足20萬,卻擁有瑞士最早的學府———巴塞爾大學(1460),萊茵河蜿蜒著穿過她的中心。德國哲學家尼采年輕時曾在巴塞爾大學擔任過十年的古典文獻學教授,在那裡完成了他的代表作《悲劇的誕生》,並與在近郊安度晚年的音樂家瓦格納成為莫逆之交。

瑞士是歐拉的出生地,也是歐拉學習和生活過的地方,為了紀念歐拉的數學貢獻,以及對世界科學的影響,瑞士於1957年發行一套郵票,以此紀念歐拉的250週年誕辰,又於2007年發行新的紀念郵票,紀念歐拉誕辰300週年。

德國

1740年,安娜女皇退位並於當年去世,歐拉遂接受了普魯士國王腓特烈大帝的邀請,到柏林科學院擔任數學部主任。歐拉與普魯士國王相處並不愉快,因為國王喜歡溜鬚拍馬的大臣。腓特烈大帝之所以支持數學只是感到那是一種責任,但他從內心裡討厭這門學問,因為他自己的數學很蹩腳,這方面他無法與法蘭西皇帝拿破侖相比,後者自稱是個幾何學家,並與同時代所有的巴黎數學家都交上了朋友。即使達朗貝爾十分坦率地告訴普魯士國王,把任何其他數學家置於歐拉之上都是一種錯誤的行為。可惜的是,這不僅沒有讓自負的國王改變對歐拉的看法,反而變本加厲使得歐拉更難以忍受。為了自己子女的前途,歐拉只好打點行裝,離開了生活了25年之久的柏林,再次回到了寒冷的彼得堡,他的妻子和兒孫們也一同返回。

在歐拉回到彼得堡之後,女皇以皇室的規格接待他,撥給他一棟可供全家18人居住的大房子和成套的傢俱,並派去自己的一個廚子。惱羞成怒的普魯士國王只得寫信給法國數學家拉格朗日,「歐洲最偉大的國王希望歐洲最偉大的數學家在他的宮裡。」顯而易見,他對歐拉的離任耿耿於懷。

為了紀念曾經生活在德國的歐拉,德國曾於1950年,1957年,1983年發行了紀念郵票。1950年,在紀念柏林科學院成立250週年的一套郵票中就有畫有歐拉頭像的郵票。1957年的"Famous Scientists"系列票中也有歐拉的頭像。1983年發行的紀念郵票是為了紀念歐拉的200週年忌辰。

中國

為慶祝歐拉誕辰300週年,瑞士政府、中國科學院及中國教育部於2007年4月23日下午在北京的中國科學院文獻情報中心共同舉辦紀念活動,回顧歐拉的生平、工作及對現代生活的影響。瑞士教育與研究國務秘書Charles Kleiber在開幕致詞中說:「今天,我們在這裡紀念近代歷史上最偉大的學者之一。沒有歐拉的眾多科學發現,今天的我們將過著完全不一樣的生活。」

中國科學院副秘書長郭華東、教育部國際合作司司長助理徐永吉、中國科學院數學與系統科學研究院院長郭雷也分別發表了致詞。

值得一提的是,吳文俊院士也出席了紀念活動,並介紹了歐拉和中國古代數學家之間不謀而合的研究方向。

美國

2013年4月15日是歐拉誕辰的306週年,谷歌更換了首頁塗鴉向這位數學天才致敬。在那天的谷歌塗鴉中,融入了許多萊昂哈德・歐拉的數學成就。

歐拉與中國

歐拉在數論中證明過一個定理,如今叫中國剩餘定理,也叫孫子定理,在孫子算經中有一個簡單的特例,後由南宋數學家秦九韶給出了一般形式。後來歐拉、高斯分別重新發現了這個定理,並給出了證明。

歐拉的著作最初傳入中國,可追溯到大約250年前,由俄國傳教士帶進來,並送給天主教的一個支派「耶穌會」在中國的機構,曾收藏在北京天主教北堂的圖書館裡。然而,明、清年代中國數學已經日漸衰落,裹足不前,遠遠落後於歐洲。大約在乾隆年間傳入中國的歐拉著作只能束之高閣,無人問津。19世紀中葉,在李善蘭與英國傳教士合譯的《代微積拾級》,華蘅芳與美國傳教士傅蘭雅合譯的《微積溯源》中都介紹了歐拉和他的工作。中國人開始知道這位數學大家了,歐拉也登上了晚清人編寫的《疇人傳》。清末民初,西方的先進數學被引進中國,大學裡開設了「微積分」等課程,這才使得越來越多的中國人認識了歐拉,學習他的數學。

歐拉也是所有中國數學家和中國人的導師。這首先是因為每一個進入學校接受教育的人,都要學習他所創造的數學知識;這更是因為,他那苦難而光輝的一生給後世無限的啟迪,教導人們如何做人,如何做學問,如何生存。遺憾的是,目前中國還沒有一家圖書館引進《歐拉全集》。

共2頁 上一頁 1 2 下一頁
一些歷史評價
實用查詢
文學資料
健康知識
起名參考