廣義相對論在物理上的應用有哪些 其進階概念是什麼樣的
物理應用
引力透鏡
愛因斯坦十字:同一個天體在引力透鏡效應下的四個成像
引力場中光線的偏折效應是一類新的天文現象的原因。當觀測者與遙遠的觀測天體之間還存在有一個大質量天體,當觀測天體的質量和相對距離合適時觀測者會看到多個扭曲的天體成像,這種效應被稱作引力透鏡。受系統結構、尺寸和質量分佈的影響,成像可以是多個,甚至可以形成被稱作愛因斯坦環的圓環,或者圓環的一部分弧。最早的引力透鏡效應是在1979年發現的,至今已經發現了超過一百個引力透鏡。即使這些成像彼此非常接近以至於無法分辨——這種情形被稱作微引力透鏡——這種效應仍然可通過觀測總光強變化測量到,很多微引力透鏡也已經被發現。
引力波
藝術家的構想圖:激光空間干涉引力波探測器LISA對脈衝雙星的觀測是間接證實引力波存在的有力證據(參見上文軌道衰減一節)。已經有相當數量的地面引力波探測器投入運行,最著名的是GEO600、LIGO(包括三架激光干涉引力波探測器)、TAMA300和VIRGO;而美國和歐洲合作的空間激光干涉探測器LISA正處於開發階段,其先行測試計劃LISA探路者(LISAPathfinder)於2009年底之前正式發射升空。
美國科研人員2016年2月11日宣佈,他們利用激光干涉引力波天文台(LIGO)於去年9月首次探測到引力波。 研究人員宣佈,當兩個黑洞於約13億年前碰撞,兩個巨大質量結合所傳送出的擾動,於2015年9月14日抵達地球,被地球上的精密儀器偵測到。證實了愛因斯坦100年前所做的預測。
對引力波的探測將在很大程度上擴展基於電磁波觀測的傳統觀測天文學的視野,人們能夠通過探測到的引力波信號瞭解到其波源的信息。這些從未被真正瞭解過的信息可能來自於黑洞、中子星或白矮星等緻密星體,可能來自於某些超新星爆發,甚至可能來自宇宙誕生極早期的暴漲時代的某些烙印,例如假想的宇宙弦。
黑洞和其它
基於廣義相對論理論的計算機模擬一顆恆星坍縮為黑洞並釋放出引力波的過程廣義相對論預言了黑洞的存在,即當一個星體足夠緻密時,其引力使得時空中的一塊區域極端扭曲以至於光都無法逸出。在當前被廣為接受的恆星演化模型中,一般認為大質量恆星演化的最終階段的情形包括1.4倍左右太陽質量的恆星演化為中子星,而數倍至幾十倍太陽質量的恆星演化為恆星質量黑洞。具有幾百萬倍至幾十億倍太陽質量的超大質量黑洞被認為定律性地存在於每個星系的中心,一般認為它們的存在對於星系及更大的宇宙尺度結構的形成具有重要作用。
在天文學上緻密星體的最重要屬性之一是它們能夠極有效率地將引力能量轉換為電磁輻射。恆星質量黑洞或超大質量黑洞對星際氣體和塵埃的吸積過程被認為是某些非常明亮的天體的形成機制,著名且多樣的例子包括星系尺度的活動星系核以及恆星尺度的微類星體。在某些特定場合下吸積過程會在這些天體中激發強度極強的相對論性噴流,這是一種噴射速度可接近光速的且方向性極強的高能等離子束。在對這些現象進行建立模型的過程中廣義相對論都起到了關鍵作用,而實驗觀測也為支持黑洞的存在以及廣義相對論做出的種種預言提供了有力證據。
黑洞也是引力波探測的重要目標之一:黑洞雙星的合併過程可能會輻射出能夠被地球上的探測器接收到的某些最強的引力波信號,並且在雙星合併前的啁啾信號可以被當作一種「標準燭光」從而來推測合併時的距離,並進一步成為在大尺度上探測宇宙膨脹的一種手段。而恆星質量黑洞等小質量緻密星體落入超大質量黑洞的這一過程所輻射的引力波能夠直接並完整地還原超大質量黑洞周圍的時空幾何信息。
宇宙學
威爾金森微波各向異性探測器(WMAP)拍攝的全天微波背景輻射的溫度漲落現代的宇宙模型是基於帶有宇宙常數的愛因斯坦場方程建立的,宇宙常數的值對大尺度的宇宙動力學有著重要影響。
這個經修改的愛因斯坦場方程具有一個各向同性並均勻的解:弗裡德曼-勒梅特-羅伯遜-沃爾克度規,在這個解的基礎上物理學家建立了從一百四十億年前熾熱的大爆炸中演化而來的宇宙模型。只要能夠將這個模型中為數不多的幾個參數(例如宇宙的物質平均密度)通過天文觀測加以確定,人們就能從進一步得到的實驗數據檢驗這個模型的正確性。這個模型的很多預言都是成功的,這包括太初核合成時期形成的化學元素初始丰度、宇宙的大尺度結構以及早期的宇宙溫度在今天留下的「回音」:宇宙微波背景輻射。
從天文學觀測得到的宇宙膨脹速率可以進一步估算出宇宙中存在的物質總量,不過有關宇宙中物質的本性還是一個有待解決的問題。估計宇宙中大約有90%以上的物質都屬於暗物質,它們具有質量(即參與引力相互作用),但不參與電磁相互作用,即它們無法(通過電磁波)直接觀測到。在已知的粒子物理或其他什麼理論的框架中還沒有辦法對這種物質做出令人滿意的描述。另外,對遙遠的超新星紅移的觀測以及對宇宙微波背景輻射的測量顯示,我們的宇宙的演化過程在很大程度上受宇宙常數值的影響,而正是宇宙常數的值決定了宇宙的加速膨脹。換句話說,宇宙的加速膨脹是由具有非通常意義下的狀態方程的某種能量形式決定的,這種能量被稱作暗能量,其本性也仍然不為所知。
在所謂暴漲模型中,宇宙曾在誕生的極早期(~10-33秒)經歷了劇烈的加速膨脹過程。這個在於二十世紀八十年代提出的假說是由於某些令人困惑並且用經典宇宙學無法解釋的觀測結果而提出的,例如宇宙微波背景輻射的高度各向同性,而對微波背景輻射各向異性的觀測結果是支持暴漲模型的證據之一。然而,暴漲的可能的方式也是多樣的,現今的觀測還無法對此作出約束。一個更大的課題是關於極早期宇宙的物理學的,這涉及到發生在暴漲之前的、由經典宇宙學模型預言的大爆炸奇點。對此比較有權威性的意見是這個問題需要由一個完備的量子引力理論來解答,而這個理論至今還沒有建立(參加下文量子引力)。
進階概念
因果結構和全局幾何
一個無限的靜態閔可夫斯基宇宙的彭羅斯圖在廣義相對論中沒有任何有靜止質量的物體能夠追上或超過一束光脈衝,即是說發生於某一點的事件A在光從那一點傳播到空間中任意位置X之前無法對位置X產生影響。因此,一個時空中所有光的世界線(零性測地線)包含了有關這個時空的關鍵因果結構信息。描述這種因果結構的是彭羅斯-卡特圖,在這種圖中無限大的空間區域和時間間隔通過共形變換被「收縮」(數學上稱為緊化)在可被容納的有限時空區域內,而光的世界線仍然和在閔可夫斯基圖中一樣用對角線表示。
彭羅斯和其他研究者注意到因果結構的重要性,從而發展了所謂全局幾何。全局幾何中研究的對象不再是愛因斯坦場方程的一個個特定解(或一族解),而是運用一些對所有測地線都成立的關係,如Raychaudhuri方程,以及對物質本性的非特異性假設(通常用所謂能量條件的形式來表述)來推導普適性結論。
視界
在全局幾何下可以證明有些時空中存在被稱作視界的分界線,它們將時空中的一部分區域隔離起來。這樣的最著名例子是黑洞:當質量被壓縮到空間中的一塊足夠小的區域中後(相關長度為史瓦西半徑),沒有光子能從內部逸出。而由於任何有質量的粒子速度都無法超過光速,黑洞內部的物質也被封閉在視界內。不過,從視界之外到視界之內的通道依然是存在的,這表明黑洞的視界作為一種分界線並不是物理性質的屏障。
一個旋轉黑洞的能層,在從旋轉黑洞抽取能量的過程中扮演著重要角色早期的黑洞研究主要依賴於求得愛因斯坦場方程的精確解,著名的解包括球對稱的史瓦西解(用來描述靜態黑洞)和反對稱的克爾解(用來描述旋轉定態黑洞,並由此引入了能層等有趣的屬性)。而後來的研究通過全局幾何揭示了更多的關於黑洞的普適性質:研究表明經過一段相當長的時間後黑洞都逐漸演化為一類相當簡單的可用十一個參數來確定的星體,包括能量、動量、角動量、某一時刻的位置和所帶電荷。這一性質可歸納為黑洞的唯一性定理:「黑洞沒有毛髮」,即黑洞沒有像人類的不同髮型那樣的不同標記。例如,星體經過引力坍縮形成黑洞的過程非常複雜,但最終形成的黑洞的屬性卻相當簡單。
更值得一提的是黑洞研究已經得到了一組制約黑洞行為的一般性定律,這被稱作黑洞(熱)力學,這些定律與熱力學定律有很強的類比關係。例如根據黑洞力學的第二定律,一個黑洞的視界面積永不會自發地隨著時間而減少,這類似於一個熱力學系統的熵;這個定律也決定了通過經典方法(例如,彭羅斯過程)不可能從一個旋轉黑洞中無限度地抽取能量。這些都強烈暗示了黑洞力學定律實際是熱力學定律的一個子集,而黑洞的表面積和它的熵成正比。從這個假設可以進一步修正黑洞力學定律。例如,由於黑洞力學第二定律是熱力學第二定律的一部分,則可知黑洞的表面積也有可能減小,只要有某種其它過程來保證系統的總熵是增加的。而熱力學第三定律認為不存在溫度為絕對零度的物體,可以進一步推知黑洞應該也存在熱輻射;半經典理論計算表明它們確實存在有熱輻射,在這個機制中黑洞的表面引力充當著普朗克黑體輻射定律中溫度的角色,這種輻射稱作霍金輻射(參見下文量子理論一節)。
廣義相對論還預言了其他類型的視界模型:在一個膨脹宇宙中,觀察者可能會發現過去的某些區域不能被觀測(所謂「粒子視界」),而未來的某些區域不能被影響(事件視界)。即使是在平直的閔可夫斯基時空中,當觀察者處於一個加速的參考系時也會存在視界,這些視界也會伴隨有半經典理論中的盎魯輻射。
奇點
廣義相對論的另一個普遍卻又令人困擾的特色問題是時空的分界線——奇點的出現。時空可以通過沿著類時和類光的測地線來探索,這些路徑是光子及其他所有粒子在自由落體運動中的可能軌跡,但愛因斯坦場方程的某些解具有「粗糙的邊緣」——這被稱作時空奇點,這些奇點上類時或類光的測地線會突然中止,而對於這些奇點沒有定義好的時空幾何來描述。需要說明的是,「奇點」往往可能並不是一個「點」:那些場方程的解的「粗糙邊緣」在既有坐標系下,不僅可能是一個「點」,還可以以其他幾何形式出現(比如克爾黑洞的「奇環」等)。一般意義上的奇點是指曲率奇點,這是說在這些點上描述時空曲率的幾何量,例如裡奇張量為無限大(曲率奇點是相對所謂坐標奇點而言的,坐標奇點本質上不屬於奇點的範疇:有些度規在某個特定坐標下會產生無窮大,但本質上這些點不具有奇性,在其他合適的坐標下是光滑的,也不會產生無窮大的曲率張量)。描述未來的奇點(世界線的終結)的著名例子包括永遠靜態的史瓦西黑洞內部的奇點,以及永遠旋轉的克爾黑洞內部的環狀奇點。弗裡德曼-勒梅特-羅伯遜-沃爾克度規,以及其他描述宇宙的時空幾何都具有過去的奇點(世界線的開端),這被稱作大爆炸奇點,而有些還具有未來的奇點(大擠壓)。
考慮到這些模型都是高度對稱從而被簡化的,人們很容易去猜測奇點的出現是否只是理想狀態下的不自然產物。然而著名的由全局幾何證明的奇點定理指出,奇點是廣義相對論的一個普遍特色結果,並且任何有質量的實體發生引力坍縮並達到一個特定階段後都會形成奇點,而在一系列膨脹宇宙模型中也一樣存在奇點。不過奇點定理的內容基本沒有涉及到奇點的性質,這些關於確定奇點的一般結構(例如所謂BKL假說)的問題是當前相關研究的主要課題。另一方面,由於在對於物理規律的破壞方面而言,一個被包裹於視界之中的奇點被認為要好過一個「裸」的奇點,故而宇宙監督假說被提出,它認為所有未來的實際奇點(即沒有完美對稱性的具有實際性質的物體形成的奇點)都會被藏在視界之內,從而對外面對觀察者不可見,即自然界憎恨裸奇點。儘管還沒有實際證據證明這一點,有數值模擬的結果支持這一假說的正確性。
演化方程
每一個愛因斯坦場方程的解都是一個宇宙,這裡的宇宙含義既包括了整個空間,也包括了過去與未來——它們並不單單是反映某些事物的「快照」,而是所描述的時空的完全寫真。每一個解在其專屬的特定宇宙中都能描述任意時間和任意位置的時空幾何和物質狀態。出於這個表徵,愛因斯坦的理論看上去與其他大多數物理理論有所不同:大多數物理理論都需要指明一個物理系統的演化方程(例如量子力學中的埃倫費斯特定理),即如果一個物理系統在給定時刻的狀態已知,其演化方程能夠允許描述系統在過去和未來的狀態。愛因斯坦理論中的引力場和其他場的更多區別還在於前者是自身相互作用的(是指它在沒有其他場出現時仍然還是非線性的),並且不具有固定的背景結構(在宇宙尺度上會發生演化)。
為了更好地理解愛因斯坦場方程這個與時間有關的偏微分方程,可以將它寫成某種能夠描述宇宙隨時間演化的形式。這種形式被稱作「3+1」分解,其中時空被分為三維空間和一維時間。最著名的形式叫做ADM形式,在這種分解下廣義相對論的時空演化方程具有良好的性質:在適當的初始條件給定的情形下方程有解並且是唯一的。場方程的「3+1」分解形式是數值相對論的研究基礎。
全局和准局部量
演化方程的觀念與廣義相對論性物理中的另一個方面緊密聯繫:在愛因斯坦的理論中,一個系統的總質量(或能量)這個看似簡單的概念無法找到一種普遍性的定義。其原因在於,引力場原則上並不像其他的場那樣具有可以局部化的能量。
儘管如此,試圖通過其他途徑來定義一個系統的總質量還是可能的,在經典物理中,質量(或能量)的定義可以來自時間平移不變性的守恆量,或是通過系統的哈密頓形式。在廣義相對論中,從這兩種途徑出發可以分別得到如下質量的定義:
* 柯瑪質量:從類時的Killing矢量出發通過柯瑪積分得到的在時間平移不變性下的守恆量,表現為一個靜態時空的總能量;
* ADM質量:在一個漸近平直時空中建立廣義相對論的哈密頓形式,從中定義系統的總能量。
如果將一個系統的總質量中被引力波攜帶至無限遠處的能量除去,得到的結果叫做零性無限遠處的邦迪質量。這些定義而來的質量被捨恩和丘成桐的正質量定理證明是正值,而動量和角動量也具有全局的相應定義。在這方面的研究中還有很多試圖建立所謂准局部量的嘗試,例如僅通過一個孤立系統所在的有限空間區域中包含的物理量來構造這個孤立系統的質量。這類嘗試寄希望於能夠找到一個更好地描述孤立系統的量化方式,例如環假說的某種更精確的形式。